24 research outputs found

    Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence

    Full text link
    We study the {edge-coloring} problem in the message-passing model of distributed computing. This is one of the most fundamental and well-studied problems in this area. Currently, the best-known deterministic algorithms for (2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01}, where Delta is the maximum degree of the input graph. Also, recent results of \cite{BE10} for vertex-coloring imply that one can get an O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an arbitrarily small constant epsilon > 0. In this paper we devise a drastically faster deterministic edge-coloring algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves the previous state-of-the-art {exponentially} in a wide range of Delta, specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In addition, for small values of Delta our deterministic algorithm outperforms all the existing {randomized} algorithms for this problem. On our way to these results we study the {vertex-coloring} problem on the family of graphs with bounded {neighborhood independence}. This is a large family, which strictly includes line graphs of r-hypergraphs for any r = O(1), and graphs of bounded growth. We devise a very fast deterministic algorithm for vertex-coloring graphs with bounded neighborhood independence. This algorithm directly gives rise to our edge-coloring algorithms, which apply to {general} graphs. Our main technical contribution is a subroutine that computes an O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq Delta

    Secured Distributed Algorithms Without Hardness Assumptions

    Get PDF
    We study algorithms in the distributed message-passing model that produce secured output, for an input graph G. Specifically, each vertex computes its part in the output, the entire output is correct, but each vertex cannot discover the output of other vertices, with a certain probability. This is motivated by high-performance processors that are embedded nowadays in a large variety of devices. Furthermore, sensor networks were established to monitor physical areas for scientific research, smart-cities control, and other purposes. In such situations, it no longer makes sense, and in many cases it is not feasible, to leave the whole processing task to a single computer or even a group of central computers. As the extensive research in the distributed algorithms field yielded efficient decentralized algorithms for many classic problems, the discussion about the security of distributed algorithms was somewhat neglected. Nevertheless, many protocols and algorithms were devised in the research area of secure multi-party computation problem (MPC or SMC). However, the notions and terminology of these protocols are quite different than in classic distributed algorithms. As a consequence, the focus in those protocols was to work for every function f at the expense of increasing the round complexity, or the necessity of several computational assumptions. In this work, we present a novel approach, which rather than turning existing algorithms into secure ones, identifies and develops those algorithms that are inherently secure (which means they do not require any further constructions). This approach yields efficient secure algorithms for various locality problems, such as coloring, network decomposition, forest decomposition, and a variety of additional labeling problems. Remarkably, our approach does not require any hardness assumption, but only a private randomness generator in each vertex. This is in contrast to previously known techniques in this setting that are based on public-key encryption schemes

    Deterministic Logarithmic Completeness in the Distributed Sleeping Model

    Get PDF
    In this paper we provide a deterministic scheme for solving any decidable problem in the distributed sleeping model. The sleeping model [Valerie King et al., 2011; Soumyottam Chatterjee et al., 2020] is a generalization of the standard message-passing model, with an additional capability of network nodes to enter a sleeping state occasionally. As long as a vertex is in the awake state, it is similar to the standard message-passing setting. However, when a vertex is asleep it cannot receive or send messages in the network nor can it perform internal computations. On the other hand, sleeping rounds do not count towards awake complexity. Awake complexity is the main complexity measurement in this setting, which is the number of awake rounds a vertex spends during an execution. In this paper we devise algorithms with worst-case guarantees on the awake complexity. We devise a deterministic scheme with awake complexity of O(log n) for solving any decidable problem in this model by constructing a structure we call Distributed Layered Tree. This structure turns out to be very powerful in the sleeping model, since it allows one to collect the entire graph information within a constant number of awake rounds. Moreover, we prove that our general technique cannot be improved in this model, by showing that the construction of distributed layered trees itself requires ?(log n) awake rounds. This is obtained by a reduction from message-complexity lower bounds, which is of independent interest. Furthermore, our scheme also works in the CONGEST setting where we are limited to messages of size at most O(log n) bits. This result is shown for a certain class of problems, which contains problems of great interest in the research of the distributed setting. Examples for problems we can solve under this limitation are leader election, computing exact number of edges and average degree. Another result we obtain in this work is a deterministic scheme for solving any problem from a class of problems, denoted O-LOCAL, in O(log ? + log^*n) awake rounds. This class contains various well-studied problems, such as MIS and (?+1)-vertex-coloring. Our main structure in this case is a tree as well, but is sharply different from a distributed layered tree. In particular, it is constructed in the local memory of each processor, rather than distributively. Nevertheless, it provides an efficient synchronization scheme for problems of the O-LOCAL class
    corecore